Accurately Sized Test Statistics with Misspecified Conditional Homoskedasticity
نویسندگان
چکیده
We study the problem of obtaining accurately sized test statistics in finite samples for linear regression models where the error dependence is of unknown form. With an unknown dependence structure there is traditionally a trade-off between the maximum lag over which the correlation is estimated (the bandwidth) and the decision to introduce conditional heteroskedasticity. In consequence, the correlation at far lags is generally omitted and the resultant inflation of the empirical size of test statistics has long been recognized. To allow for correlation at far lags we study test statistics constructed under the possibly misspecified assumption of conditional homoskedasticity. To improve the accuracy of the test statistics, we employ the secondorder asymptotic refinement in Rothenberg (1988) to determine critical values. We find substantial size improvements resulting from the ∗Corresponding author †We thank the members of the Econometrics Lab at Santa Barbara for helpful comments.
منابع مشابه
Testing for heteroskedasticity and spatial correlation in a random effects panel data model
A panel data regression model with heteroskedastic as well as spatially correlated disturbancesis considered, and a joint LM test for homoskedasticity and no spatial correlation is derived. In addition, a conditional LM test for no spatial correlation given heteroskedasticity, as well as a conditional LM test for homoskedasticity given spatial correlation, are also derived. These LM tests are c...
متن کاملA Nonparametric Goodness-of-fit-based Test for Conditional Heteroskedasticity∗
In this paper we propose a nonparametric test for conditional heteroskedasticity based on a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for classical linear regression models, the nonparametric R2 is obtained for the local polynomial regression of the residuals from a parametric regression on some covariates. It is close to 0 under the null hypothesis of c...
متن کاملTesting Conditional Factor Models∗
We develop a methodology for estimating time-varying alphas and factor loadings based on nonparametric techniques. We test whether conditional alphas and long-run alphas, which are averages of conditional alphas, are equal to zero and derive test statistics for the constancy of factor loadings. The tests can be performed for a single asset or jointly across portfolios. The traditional Gibbons, ...
متن کاملPutting MAP Back on the Map
Conditional Random Fields (CRFs) are popular models in computer vision for solving labeling problems such as image denoising. This paper tackles the rarely addressed but important problem of learning the full form of the potential functions of pairwise CRFs. We examine two popular learning techniques, maximum likelihood estimation and maximum margin training. The main focus of the paper is on m...
متن کاملSimulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007